Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 13(9)2021 09 07.
Article in English | MEDLINE | ID: mdl-34578367

ABSTRACT

If viral strains are sufficiently similar in their immunodominant epitopes, then populations of cross-reactive T cells may be boosted by exposure to one strain and provide protection against infection by another at a later date. This type of pre-existing immunity may be important in the adaptive immune response to influenza and to coronaviruses. Patterns of recognition of epitopes by T cell clonotypes (a set of cells sharing the same T cell receptor) are represented as edges on a bipartite network. We describe different methods of constructing bipartite networks that exhibit cross-reactivity, and the dynamics of the T cell repertoire in conditions of homeostasis, infection and re-infection. Cross-reactivity may arise simply by chance, or because immunodominant epitopes of different strains are structurally similar. We introduce a circular space of epitopes, so that T cell cross-reactivity is a quantitative measure of the overlap between clonotypes that recognize similar (that is, close in epitope space) epitopes.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/immunology , Cross Reactions/immunology , Immunodominant Epitopes/immunology , Influenza A virus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Coronavirus/classification , Coronavirus/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunologic Memory , Influenza A virus/genetics , Influenza, Human/immunology , Mice , Models, Theoretical , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell
SELECTION OF CITATIONS
SEARCH DETAIL